Bread is staple food in the UK. There are many varieties of bread; wholemeal, granary, white, spelt, soda and rye. They can be shaped in a variety of ways. Bread dough can be enriched with ingredients such as dried fruit, sugar, milk, butter and eggs to produce baked items like buns and pastries. Bread is a relatively low cost food, extremely versatile and relatively easy to make yourself.

Food Science

Sifting the flour: the sifting process introduces air which acts as a raising agent and helps the bread to rise in the oven. **Adding warm liquid** Water hydrates the flour. At 37°C the liquid provides the optimum temperature for the yeast to ferment and produce the raising agent CO2. Moisture is needed for a soft dough. Sugars are produced by this fermentation which the yeast consumes. As it does so it creates alcohol and carbon dioxide gas as a waste products. **Mixing and Kneading Dough** during the mixing and kneading, two of the proteins present in the flour (gliadin and glutenin) become hydrated and when the dough is kneaded an elastic protein complex called gluten is formed. This gluten gives bread its structure and prevents it collapsing. Proving Dough during this step some of the starch present in flour is broken down and is fermented by the yeast. CO2 gas is produced which causes the gluten network to expand and therefore makes the dough rise; the quality of the gluten is important if its too weak bubbles can burst causing lack of volume, if it’s too strong the dough won’t stretch enough.

‘Knocking back’ proved dough, the dough is ‘knocked back’ to remove the large CO2 bubbles produced by the yeast. This ensures a more even texture and a better rise. Large bubbles of gas would make large holes in the finished bread.

Baking, the bread dough rises as the CO2 produced by fermentation of yeast expands with heat. Yeast activity increases at first, but as the temperature of the dough rises it slows down until eventually the heat will kill the yeast. The water is absorbed by the starch granules in the flour, the starch grains swell and gelatinise this supports the firm structure of the loaf. A gluten network forms a sort of skeleton which traps the CO2 gas. During baking the gluten strands are stretched as the CO2 gas expands, this together with the coagulation of the gluten protein results in the finished bread structure.

Functions of Bread ingredients

- **Yeast: Raising agent:** Is a living micro organism. When it’s the ideal conditions for growth, it respires and produces carbon dioxide. Ideal conditions for growth are: Warmth, moisture, food and time.
- **Liquid: Moisture:** It helps to create the right conditions for the yeast to grow. It also hydrates the flour, helping with gluten formation.
- **Salt: Structure:** Helps with gluten formation.
- **Taste:** A small amount improves the flavour of the bread.
- **Too much:** Will prevent the yeast from fermenting.
- **Flour: Bulk:** It gives bulk to the bread.
- **Taste:** Different types of flour affect the flavour. Absorbs moisture flour can absorb a lot of water to make a dough.
- **Strong flour** has a higher protein content so will produce a good quality loaf without it collapsing.
- **Nutrients** provides starchy carbohydrates, protein and is fortified with vitamins and minerals.

Other ingredients in bread making

- **Fat:** Lubrication- fat allows the other ingredients to slide over each other so the bread can rise.
- **Shortening** – fat coats the particles of flour and stops it absorbing water, so only a small amount should be used.
- **Taste:** Enhances the flavour.
- **Shelf Life:** Fat improves the texture of the bread, keeping it moist and preventing it from going stale quickly.

Other ingredients in bread making

- **Sugar:** Food for the yeast: sugar provides food energy for the yeast so that they can respire and grow.
- **Browning:** Sugar turns to caramel when it’s cooked and makes the crust brown.
- **Taste:** Sugar adds sweetness to the bread.
- **Ascorbic Acid:** Added mainly in the commercial manufacture of bread, it speeds up time it takes to make the bread.

Nutritional Value of Bread:

Bread is a good source of starchy carbohydrate, protein, B vitamins, calcium and iron. Bread which is made with wholemeal flour is also a good source of dietary fibre.

Additional learning and challenge activities

- What does the term ‘enriched dough’ mean?
- List the key stages for traditional bread making.
- Describe the difference between making bread using the bulk fermentation and the Chorleywood process.
- List the four ideal conditions needed for yeast to respire and produce carbon dioxide.
- Name the gas produced by the fermentation of yeast.
- Why is the formation of the protein gluten important in bread making?
- What does the term ‘knocking back’ mean and why is it necessary?
Cereals - Wheat

Cereals describe edible grasses that are harvested for their grain. The endosperm, the germ and the bran have importance in cooking, nutrition and food science. The most popular cereals are wheat, rice, maize (corn) oats ad barley. Other cereals such as rye millet, buckwheat, quinoa, sorghum and amaranth are growing in popularity.

Food Science
Wheat flour contains 2 proteins called gliadin and glutenin. When moisture such as water or milk is added to the flour protein gluten is formed. Strong flour such as bread flour contains a higher percentage of protein than softer flours. Some food products require more gluten development for strength and structure such as in the making of bread, also in puff, flaky and choux pastry. Softer flour should be used in cakes, batters and muffins where gluten development is to be avoided, as strong flours will result in and undesirable tougher and chewy texture.

Effect of heat:

- **Coagulation**, in the case of a dough or cake mix heat will cause the protein present in the flour to coagulate
- **Gelatinisation:** when starch is mixed with water it forms a suspension and with heat, the starch granules absorb moisture and swell. This thickens the mixture, resulting in a gel.
- **Dextrinisation:** When starch is exposed to dry heat the colour will change to brown. Dextrin causes the characteristic brown crust of baked products and toast.

- **Key points:** Starch is found in the endosperm
- Wholegrain cereals have a higher nutritional value than processed cereals
- Wholegrain cereal is grain left in its natural state.
- The endosperm from wheat provides starch and protein.
- Dietary fibre is found in wheat bran.
- Milling wheat grain into flour is an example of primary processing.
- **Secondary processing** of wheat is the making of food products using the flour such as biscuits, sauce, pasta and cakes.
- By law, the nutrients calcium, iron and the B vitamins (niacin and thiamin) must be added to flour, this is known as fortification.
- **Wholemeal flour** is made from the whole wheat grain, nothing is removed.
- **White flour** has most of the bran and wheat germ removed.
- Wheat provides energy in the form of starch
- Wheat bran provides dietary fibre and is a source of B vitamins.
- The more you knead dough or beat a mix with wheat flour the more gluten will be formed. Ok for bread, not for shortcrust pastry, cakes or shortbread biscuits.
- **Extraction rate:** How much of the original wheat grain is in the flour. 100% means that it is all the grain.
- **NSP:** (non starch polysaccharide) indigestible carbohydrates found in plant food, often called dietary fibre.
- **Phytic acid:** A form of phosphorus which limits absorption of calcium and iron in the body. Wheat stores the mineral phytic acid, it’s present in the bran of the grain. The acid will bind with both calcium and iron to form phytates and this then limits the absorption of these minerals in the body.
- **Staple Foods:** Staple foods are usually starchy foods that grow well and can be stored for consumption throughout the year.

Types of flour produced from wheat:
- Wholegrain
- Brown
- White
- Granary
- Stoneground
- Organic

Nutritional Value of Wheat:
Wheat is a good source of starchy carbohydrate, found in the endosperm. It is also a good source of protein and provides a range of vitamins and minerals. If the wheat still has the bran it will provide dietary fibre in the form of (NSP). B vitamins are found in the bran layers. Flour sold in the UK is fortified with calcium, iron and B vitamins.

Processed wheat grain products:
- **Wheat Bran**: Added to biscuits, cakes, muffins to increase dietary fibre.
- **Puffed wheat**: Flaked, puffed and extruded wheat is used to manufacture breakfast cereals.
- **Semolina**: Mainly used for making pasta.
- **Couscous**: made from semolina grains
- **Borghul**: Also known and bulgur or cracked wheat, key ingredient in tabouli and kibbeh, can be used in soups, burgers and casseroles.

Additional learning and challenge activities
- Ensure you are able to explain the difference between primary and secondary processing
- What does the term ‘extraction’ rate of flour mean?
- Can you explain the nutritional differences between a food product made with wholemeal flour and one made with white flour?
- You need to know the key nutrients provided in cereals.
- Make sure you can explain how the nutritional value can be affected when cereal is processed.
- Can you discuss the health benefits of a diet containing whole grain cereals?
Pasta

Pasta is a staple food of Italy and together with bread, rice and potatoes, it forms part of the staple food range in the UK. Pasta is usually bought fresh or dried and is available in a variety of shapes, flavours and colours. It can be filled or unfilled and can be served with a variety of sauces. Pasta is a convenience food and it is quick to cook, it requires little skill and is cost effective.

Pasta is made from durum wheat; durum wheat has a higher protein content than other wheat varieties. It produces a grainy, yellow coloured semolina on milling. Durum wheat makes good quality pasta because it requires less water to make the dough, making it easier to dry the pasta. Gluten free pasta is available and you can make your own by adding xantham gum into gluten free flour.

Key terms

Convenience food – where some or all the preparation has been done in advance.

Durum wheat – high protein wheat used to make pasta.

Laminating – rolling out pasta into thin sheets.

Dies – machinery attachments used to make special pasta shapes that cannot be made by hand.

Extruded – pasta is forced through a die to achieve a special pasta shape, eg spaghetti and macaroni.

Food Science

Xanthan gum can be used in a gluten free pasta recipe to help give the pasta it’s elasticity so it can be rolled through the pasta machine and give it its stability. Xanthan gum is a polysaccharide with a wide variety of uses, including as a common food additive. It is a powerful thickening agent, and also has uses as a stabilizer to prevent ingredients from separating.

Rice flour and potato flour can be used for gluten free recipes. Dehydrating pasta is possible rather than air drying to ensure complete moisture removal to preserve the pasta.

Various ingredients can be added for colour which add to the pasta’s nutritional content.

Al dente: ‘To the tooth’ – usually used to describe when pasta is perfectly cooked, with a little ‘bite’ in the middle.

Starch, should be removed from the pasta by cooking in boiling salted water, this prevents the pasta from being too sticky.

Colouring Pasta:

Spinach: Verdi – Green

Tomato puree: Pomodori - Red

Beetroot: Barbabietola rossa – Purple

Squid ink: Nero - Black

Nutritional Value of Pasta:

Pasta is a good source of starchy carbohydrate, protein and B vitamins. Whole wheat pasta also provides dietary fibre. Pasta is not suitable for a coeliac as it contains wheat flour.

Storage

- Dried pasta can be stored in a cool, dry cupboard and has a long shelf life. Fresh pasta should be kept chilled. Packing should be clearly labelled with details of ‘best before’ or ‘use by’ dates and storage instructions.

Additional learning and challenge activities

- Investigate how to make gluten free pasta

- How could xanthan gum help create a gluten free pasta dough?

- Create a page investigating the various types of pasta, their names and what they look like.
Many cereals are processed into **breakfast cereals**. The most common cereals are wheat, maize, oats and rice. They are processed in different ways, such as puffed, shredded, flaked or rolled. They are often mixed with other ingredients, such as nuts, dried fruit and honey to improve their flavour, texture and nutritional value. Some cereals have sugar added to them, which makes them less healthy.

Oats are a good source of **starchy carbohydrate**, **protein** and **fat**. They are high in **fibre**. Pure oats do not contain gluten, however a lot of supermarket oats are not pure.

Maize (corn) has a similar nutrient content to other cereals and is a good source of **starchy carbohydrate**. Yellow varieties of corn also contain **carotene**, which is converted to **Vitamin A** in the body.

Rye is mainly grown in Northern Europe. It is **hardy** and likes cold, wet climates. Rye bread has a close, **dense** texture and is often combined with wheat flour so it is not too dense and sticky. Rye flour has a **longer shelf life** than wheat flour due to its **higher gliadin protein** content. It can also be used to make alcoholic drinks, such as whiskey & beer. It is a good source of starchy carbohydrate, **fibre**, **minerals** and **vitamin B1** (**thiamin**).

Barley is the second most widely grown crop in the UK after wheat. The most common product is **pearl barley**. It is also used in beer making. It can be used in **sweet & savoury** dishes and also bulks out soups & casseroles. Barley is a good source of **starchy carbohydrate**, **iron** & **vitamin B3**.

Oats are grown in cold climates, such as Scotland. They are **rolled rather than crushed and are partially cooked during this process. Oats can be processed further to make them cook more quickly.**

Other grains:
- **Sorghum**: cereal grain grown in Asia & Africa. Milled into a soft, fine flour to make flat breads and has a nutty taste.
- **Quinoa**: pronounced ‘keen-wah’, is often called a superfood. It is a good source of protein- providing all the essential amino acids and is a HBV protein. It is gluten free, cholesterol free and also whole grain so has plenty of fibre too. There are red, black and white quinoa and they are cooked similar to rice/barley.
- **Arrowroot**: comes from the maranta plant and is used to thicken sauces. Can also be used as a glaze for fruits in the form of a smooth, clear gel.
- **Sago**: comes from sago palm and is used for milky puddings.
- **Tapioca**: comes from a tuber called cassava and is also used for milky puddings as well as a thickener in soups & stews.

Key words
- **Humid**: damp, warm environment. Not a good environment for cereals to be stored in; they need to be cool & dry.
- **Best before date**: When cereals should be consumed by.
- **Maize**: sometimes called **corn**. Staple food grown in South America, Asia & Africa.
- **Masa harina**: finely ground corn flour treated with slaked lime; main ingredient in corn tortillas.
- **Beta- glucan**: found in oats; lowers blood cholesterol.
- **Coeliac disease**: an auto immune condition where a person has an adverse reaction to gluten.

Barley is the second most widely grown crop in the UK after wheat. The most common product is **pearl barley**. It is also used in beer making. It can be used in **sweet & savoury** dishes and also bulks out soups & casseroles. Barley is a good source of **starchy carbohydrate**, **iron** & **vitamin B3**.

Additional learning and challenge activities
- Do a poll to find out which breakfast cereals your classmates eat; which are the most popular? Why do you think this is? Discuss the advantages & disadvantages of the most popular cereals; are they healthy?
- Research the name of the deficiency disease caused by lack of niacin (vitamin B3) where maize (corn) is used as a staple food.
- Can you explain the difference between soluble and insoluble fibre?
- Get a map of the world and colour code where each crop is grown/produced.
- Research into the most likely contaminants that can affect the quality of the cereal crops and how they can be prevented.
- Create a dish using one of the cereals listed on this page!
GCSE Food Preparation & Nutrition - Unit 1 Food Commodities

Rice

Rice is the most widely consumed staple food for a large part of the world's human population, especially in Asia. Rice grows well in hot and humid conditions in flooded fields called paddy fields. It is processed in a similar way to wheat. It is cost effective and versatile, it has a long shelf life as it's a dried food. Storage should be in a cool dry area (usually in a kitchen cupboard).

Growing and processing:
Many different types of rice are grown and used in cooking. In order to grow rice the land is firstly ploughed to 'till' or dig up, mix and level the soil. In most Asian countries the ancestral methods for cultivating and harvesting are still practised. The fields are often ploughed using water buffalo. Rice seedlings are planted by hand in the fields which have been flooded by rain or river water.

Key terms
Brown rice contains bran. White rice has the bran removed. Cooked long grain rice should be fluffy and individual grains will be visible.
Cooked short grain rice will be stickier and starchier.
Rice can be made into many different products including wine, vinegar, milk and noodles.
Beri Beri a muscle wasting disease occurring in places where white rice is a staple food. The diet is deficient in thiamine (vitamin B1)

Secondary Processing of rice:
This is when rice is processed into other products such as:
- Rice bran, rice bran oil, rice milk, rice vinegar, rice flour, rice wine, rice cakes, rice noodles, rice starch, rice tea and rice wine.

Nutritional Value of Rice
Rice is about 90% carbohydrate. 8% protein and 2% fat. It is a good source of iron and B vitamins. It is low in fibre.
Brown Rice is wholegrain. It is about 85% carbohydrate, 8% protein and 7% fat. And contains as much as four times the amount of fibre and more minerals than white rice. It is a good sources of B vitamins.

Types of Rice

Long grain:
Brown long grain rice (whole grain rice) – nutty flavour, nutritionally complete, higher vitamin, fibre and mineral content. Chewy texture and takes longer to cook.
White long grain rice – cooks quickly and is white in colour
Basmati rice – fragrant flavour, can be white or brown. The preferred rice for Indian cuisine.
Jasmine Rice (Thai fragrant rice) – Aromatic like Thai food, soft and sticky texture when cooked.
Wild rice – An aquatic wild grass. Takes a long time to cook, nutty flavour, nice texture and dark in colour. Usually sold as a mixture of rice.

Short Grain Rice:
Arborio Rice – an Italian variety which is used to make risotto
Pudding Rice
Glutinous rice – when cooked properly this rice is very sticky, used in various Asian cuisine.
Sushi Rice – higher ratio of the starch amylpectin compared to the starch amyllose. This makes this rice much stickier when cooked.

Additional learning and challenge activities
- Give 5 examples of products obtained from secondary processing of rice.
- For each one suggest one way that it can be used in cooking.
- Ensure you know the various rice varieties and dishes that can be made using these types of rice.
- What is the difference between white and brown rice?
Potatoes: A staple food in the UK. The part of the potato we eat is called the Tuber. They come in a variety of colours but we are most familiar with the red and white varieties. The most common potatoes we eat in the UK are Maris Piper, King Edwards and Desiree. Sweet potatoes are also popular and are a common alternative to traditional potatoes. Different varieties of potatoes have different textures. Some can be floury, sticky and waxy or granular. This is due to the potato cell changing during cooking. All potatoes have the same structure. The outer layer is the skin, the flesh is the area under the skin. The pith is the watery core. They can be cooked in a variety of ways including, boiling, roasting, baking and frying. Good source of vitamin C, complex carbohydrates (starch) and a small amount of B vitamins. They also contain water.

We are encouraged to eat a wide variety. Eaten as part of a main meal or a snack. Can be eaten raw. Cooking destroys some of the nutritional value. The eatwell guide suggests a third of our diet is made up of fruits and vegetables. They are a good source of carbohydrates, fibre vitamins and minerals and are low fat.

Storage of potatoes
Stored in cool, dry and dark places
Such as hessian bags, racks or paper bags
Left in the light they will turn green - the green part is toxic
Not in plastic bags as they will sweat and rot
Storing in the fridge can affect the taste and cause discolouration

Vegetables are categorised according to the part of the plant they represent. They can be grown above or below the ground.

<table>
<thead>
<tr>
<th>Group</th>
<th>Examples</th>
<th>Above or below</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roots</td>
<td>Beetroot, Carrots, swede</td>
<td>Below</td>
</tr>
<tr>
<td>Bulbs</td>
<td>Onions, leeks, spring onions</td>
<td>Below</td>
</tr>
<tr>
<td>Tubers</td>
<td>Potatoes, sweet potatoes, yams</td>
<td>Below</td>
</tr>
<tr>
<td>Stems</td>
<td>Asparagus, celery</td>
<td>Above</td>
</tr>
<tr>
<td>Leaves</td>
<td>Cabbage, brussel sprouts</td>
<td>Above</td>
</tr>
<tr>
<td>Flowers</td>
<td>Cauliflower, broccoli</td>
<td>Above</td>
</tr>
<tr>
<td>Fruits and seeds</td>
<td>Peas, courgettes, aubergine</td>
<td>Above</td>
</tr>
<tr>
<td>Fungi</td>
<td>Mushrooms</td>
<td>Above</td>
</tr>
</tbody>
</table>

Vegetable Structure
The structure of vegetables is a collection of cells made of cellulose. The type of vegetable and its age can mean that the structure varies. Vegetable cells contain high amounts of water and this keeps the vegetable form (e.g. cucumber 70% water). If they start to lose water the cells lose their firmness and they become limp and flabby.

Vegetable Storage
Salad and some green vegetables can be stored in the fridge to keep them fresh. Most other vegetables should be stored in cool, dry, well ventilated areas. Most vegetables should be eaten as soon as they are purchased to avoid nutrient and flavour losses.

Ripened fruits
Salad and some green vegetables can be stored in the fridge to keep them fresh. Most other vegetables should be stored in cool, dry, well ventilated areas. Most vegetables should be eaten as soon as they are purchased to avoid nutrient and flavour losses.

Fruit
There is a vast array of fruits available to eat in the UK. These may be home grown or imported. Many fruits are seasonal (the times of the year when the food is at its peak, in terms of harvest, flavour or cost).

There are four main groups of fruit. Some fruits (bananas, pineapple, mango) do not fit into any of the categories and tend to be sold as exotic or tropical fruits.

<table>
<thead>
<tr>
<th>Group</th>
<th>Examples</th>
<th>Storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrus</td>
<td>Oranges, lemons, limes, grapefruits</td>
<td>Cool, dry place</td>
</tr>
<tr>
<td>Hard</td>
<td>Apples, pears</td>
<td>Room temperature, do not refrigerator</td>
</tr>
<tr>
<td>Soft or Berry</td>
<td>Strawberries, raspberries, blackberries</td>
<td>Fridge</td>
</tr>
<tr>
<td>Stone</td>
<td>Plums, cherries, peaches</td>
<td>Fridge. Room temperature for faster rippening</td>
</tr>
</tbody>
</table>
Milk, Cheese and Yoghurt

Milk

Cow's milk is the dominant milk drunk in the UK. Alternative include goats milk and soya milk.

Milk contains bacteria - it must be heated to destroy the bacteria - to make it safe to drink. This makes it last longer too. Milk can be pasteurised. HTST - High temperature short time. Heated to 72 degrees for 15 seconds. Then cooled rapidly and bottled. UHT - ultra heat treatment - heated for 1 second to 132 degrees. Makes milk sterile (no bacteria). Rapidly cooled and packaged. Lasts longer than pasteurised milk.

<table>
<thead>
<tr>
<th>Type</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Whole</td>
<td>3.9 % full fat. Blue cap. Recommended for children</td>
</tr>
<tr>
<td>Semi-skimmed</td>
<td>1.7% fat. Half fat. Green cap</td>
</tr>
<tr>
<td>Skimmed</td>
<td>0.1-0.3% fat. Red cap</td>
</tr>
<tr>
<td>Evaporated</td>
<td>Concentrated, sterilised and canned. Reduced liquid content - thicker</td>
</tr>
<tr>
<td>Condensed</td>
<td>As condensed but with sugar added - helps to preserve the milk</td>
</tr>
<tr>
<td>Dried milk powder</td>
<td>Water removed to dry. Water added then can be used and stored as fresh milk</td>
</tr>
<tr>
<td>Alternative</td>
<td>Dairy free - soya, almond, oat and rice</td>
</tr>
</tbody>
</table>

Complete food - provides many nutrients - the only food needed for babies (all mammals) for the first few weeks of life.

Protein - HBV
Fat - Saturated
Carbohydrate - simple - lactose - sugar in milk
Minerals - calcium, phosphorus, potassium and iron
Vitamins - A, D and B some C
Water - high volume content.

Storage
Perishable - refrigerated and away from strong smelling foods.

Cheese

Cheese can be described as solid or semi-solid (soft cheese) milk. Can be referred to as fermented dairy food.

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard pressed</td>
<td>Cheddar, leicester</td>
</tr>
<tr>
<td>Soft (or ripened)</td>
<td>Camembert, brie, goats</td>
</tr>
<tr>
<td>unrippeded</td>
<td>Cottage cheese, cream cheese, mascarpone</td>
</tr>
<tr>
<td>Blue veined</td>
<td>Stilton, danish blue</td>
</tr>
<tr>
<td>processed</td>
<td>cheese slices and spreads</td>
</tr>
</tbody>
</table>

Protein - HBV
Fat - Saturated. High content depending on milk used
Minerals - calcium, phosphorus, sodium
Vitamins - A, D and B some C

Uses: flavour, colour, texture and increased nutritional value

Storage
Refrigerate between 0-5 degrees. Soft cheese use within a few days. Hard cheese last longer. Airtight box - prevents drying out.

Yoghurt

The bacteria convert the lactose (milk sugar) to lactic acid, which thickens the milk and gives it the tangy taste characteristic of yogurt. The yogurt is then cooled and can be flavoured with fruit, sugar, other sweeteners or flavourings. Stabilizers, such as gelatin, may also be added.

Yoghurt is made from different types of milk. Some yoghurts contain other ingredients to flavour them such as sugar and fruit.

Set yoghurt - firm texture - set in pot it is served in
Love yoghurt - fermented with live culture bacteria - still living
]Greek (strained) yoghurt - cows or ewes milk- thick and high in fat.

Storage
Refrigerate between 0-5 degrees. Eat within use by date.
MEAT

There are 3 animals we generally eat in the UK - pigs, sheep and cows.

Meat is made up of protein, water and fat. Fat in meat is either visible (seen around the edge) or invisible (in the connective tissue).

<table>
<thead>
<tr>
<th>Beef, veal</th>
<th>Steaks - sirloin, fillet, rump</th>
<th>Joints - topside, brisket, silverside</th>
<th>Cuts - skirt, chuck, minced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamb, mutton</td>
<td>Steaks - shoulder, fillet,</td>
<td>Joints - leg, saddle, neck</td>
<td>Cuts - chump, loin, noisettes, minced</td>
</tr>
<tr>
<td>Pork, bacon, gammon and ham</td>
<td>Steaks - shoulder, loin</td>
<td>Joints - spare rib, leg, shoulder, loin</td>
<td>Cuts - belly, chops</td>
</tr>
</tbody>
</table>

Protein - HBV
Fat - Saturated
Minerals - iron
Vitamins - (fat soluble) A, D and B
Water - high volume content.

Cooked for: kill bacteria, flavour, to make tender, to make more appealing, to make nutrients more digestible

Storage
Meat is a high risk food, it must be cooked and stored correctly to avoid food poisoning. Raw meat should be refrigerated, cooked meat covered and refrigerated

Digestible - some foods are broken down more easily by the body (by the action of enzymes) than others. Meat needs to be cooked to make it more digestible. They are broken down into macronutrients and micronutrients and absorbed through the wall of the intestines.

FISH

Fish is made up of protein, water, minerals and fat.

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>White fish</td>
<td>Sole, halibut, trout, tuna</td>
</tr>
<tr>
<td>oily</td>
<td>Mackerel, salmon, trout</td>
</tr>
<tr>
<td>shellfish</td>
<td>Crabs, lobster, prawns</td>
</tr>
</tbody>
</table>

Fish Flesh = muscle + connective tissue.
Fish muscle has short fibres and the connective tissue is very thin, this means that fish can be cooked quickly and still be tender and moist.
Cuts - whole, fillet, goujons, steaks

Raw meat = muscle + connective tissue + fat.

The muscles are bundles of fibre which are surround and held together with connective tissue. These muscle fibres can be different lengths depending on the part of the animal they are from. Part of the animal that does a lot of work such as the leg have longer fibres and can be tougher. Cooking is used to make the meat tender. The fibres contain water and mineral salts.

High in Protein - HBV
Low in Fat, good source of fatty acids
Minerals - calcium if bones are eaten - sardines
Vitamins - A, D
Shellfish can be high in cholesterol

Storage
Spoil quickly - eat same day or quickly after - can be unsafe to eat after longer
Refrigerate between 0-5 degrees.
GCSE Food Preparation & Nutrition - Unit 1 Food Commodities

Milk, Cheese and Yoghurt

EGGS

Eggs are produced by hens, ducks, quails and geese. The most popular are hen (chicken) eggs.

Eggs can be brought in 4 different sizes; small, medium, large and extra large.

Structure:
10% shell, 30% yolk, 60% white

Storage
Away from strong smelling foods as they are porous (contains tiny holes) and will absorb strong odours. Consume by usebydate.

Egg Nutrition

Cooked by: boiling, frying, poaching, scrambling

<table>
<thead>
<tr>
<th>Yolk</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fat</td>
<td>4.5 g</td>
</tr>
<tr>
<td>Sat. Fat</td>
<td>1.6 g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>184 mg</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>0.5 g</td>
</tr>
<tr>
<td>Protein</td>
<td>2.5 g</td>
</tr>
<tr>
<td>Fat</td>
<td>0 g</td>
</tr>
<tr>
<td>Sat. Fat</td>
<td>0 g</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0 mg</td>
</tr>
<tr>
<td>Carbohydrates</td>
<td>0 g</td>
</tr>
<tr>
<td>Protein</td>
<td>4 g</td>
</tr>
</tbody>
</table>

POULTRY

Chicken is the most popular poultry used in the UK. There is also duck, turkey, goose, guinea fowl and pigeon.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>Most popular, large bird, sold whole or jointed into legs, wings, breast and legs.</td>
</tr>
<tr>
<td>Turkey</td>
<td>Similar to chicken but larger. Associated with Christmas</td>
</tr>
<tr>
<td>Duck and goose</td>
<td>Richer tasting birds, fatty in comparison</td>
</tr>
</tbody>
</table>

Poultry = muscle + connective tissue.

Breast is softer than the legs that can be tough (hardest working part of the bird) older birds are tougher than younger birds which tend to be tender. Nutritional value varies according to the age of the bird, how it is reared and the parts eaten.

High in Protein - HBV
Lower in Fat than meat, saturated
Minerals - calcium if bones are eaten - sardines
Vitamins - good source of B, some A and D

Storage
High risk food, it must be cooked and stored correctly to avoid food poisoning. Should be refrigerated, thawed and cooked thoroughly to kill bacteria.
Soya can be processed into many different forms - milk, sauce, paste, flour tempah. It can be bought dried, canned or fresh in the form of desserts, yoghurts and margarines. Contains Fibre, HBV protein and magnesium.

Tofu can be called bean curd. Made from fresh soya milk, that has been curdled and pressed into a block and then cooled. It is made in the same way as traditional cheese. Bland tasting so needs to be favoured. Contains HBV protein, iron, calcium and other minerals. Some B vitamins. They are both bought in sealed containers and should be stored in the fridge.

Beans are legumes, normally referred to as pulses. Pulses are edible seeds that grow in a pod. Most popular bean is the baked bean - a haricot bean in tomato sauce. Beans are added to dishes for bulk, flavour or to add to the nutritional value. High in protein and fibre, some carbohydrates, calcium and B vitamins.

<table>
<thead>
<tr>
<th>bean</th>
<th>storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>fresh</td>
<td>fridge</td>
</tr>
<tr>
<td>frozen</td>
<td>freezer</td>
</tr>
<tr>
<td>dried</td>
<td>Airtight, cool dry place</td>
</tr>
<tr>
<td>canned</td>
<td>cool dry place</td>
</tr>
</tbody>
</table>

Nuts are edible kernels from which the fruit wall has been removed. Some are seeds and some are pulses. Nuts are used in savoury and sweet dishes. Nuts can cause allergic reactions. Nuts can be bought in many forms, shelled, ground, chopped, whole. Nuts have high energy values due to the high fat content. They provide LBV protein. They contain B vitamins. They provide fibre. Need to be stored in airtight containers or will turn rancid due to the high levels of oil. Kept away from moisture and strong odours. Consume before use by date.

Seeds include poppy, pumpkin and sunflower. Used as a healthy snack. Used as topping on food. Roasted or toasted to add texture and flavour. Ground to add flavour. Used to manufacture oil. Provide protein. Provide essential fatty acids. Provide iron and zinc. Vitamins B and E. Need to be stored in air tight containers in a cool dry place.
Butters

Butter is the dairy product made from churning milk or cream. The churning process separates the butterfat (the solids) from the buttermilk (the liquid). The butter we most often buy is made from cow's milk, although other varieties — made from the milk of sheep, goat, yak, or buffalo — are also available. Butter comes in salted and unsalted varieties.

Uses:
- Melting - pouring over vegetables
- Spreading - crackers and sandwiches to avoid moisture
- Creaming - making cakes
- Shallowing frying - eggs
- Shortening - rubbing in to make pastry

Nutrients:
- High in fat
- Vitamins A and D
- Sodium - salt

Storage:
- Kept in fridge
- Away from strong odours
- Fully covered or can go rancid if left open to the air.

Sugars

- Comes from sugar cane (a tall grass grown in hot climates) or sugar beet (a root crop similar to parsnip grown in climates with warm and cold seasons)
- Pure carbohydrate - give quick release energy. Provides empty calories as does not provide other nutrients
- Primary function in cooking is to provide sweetness. Can provide colour and crunch to some dishes

Oils

Vegetable oils are natural oils found in seeds, nuts and fruit. Examples include sunflower oil, sesame oil, rapeseed oil and olive oil. Oils are used for frying, basting, marinating and dressings. The main nutrient found in oils is fat, this is an unsaturated fat and considered healthier than saturated fats. Oils should be stored in cool, dry places.

Syrups

Golden syrup is the most familiar
Bought in various forms - jar - can - squeezy bottle. Very sweet.
Black treacle is also a syrup, much darker in colour and thicker with a stronger flavour
Black treacle is used for making christmas cake, gingerbread and some curry sauces.
Best stored in cool, dry places and used within three months of opening

Margarine

Margarine was introduced as an inexpensive alternative to butter. It was made from vegetable oils and is fortified with vitamins A and D.
Margarine is sold in solid block or as a soft margarine in a tub.

Uses:
- Block margarine is used for baking. Soft margarine is used for baking and frying and for spreading when making sandwiches.
- Some soft margarines have a very low fat content so no suitable for making cakes, pastries and biscuits. High in fat. Provide vitamins A and D, water and minerals such as sodium (salt).
Macronutrients

Macronutrients are needed in large amounts to make the body function properly.

Protein:
These are made up of **essential amino-acids** and **non-essential amino-acids**. (Our bodies can make non-essential amino acids, but we need to get essential amino acids from our food).

- **Source**
 - HBV – these have all the essential amino acids
 - Meat, fish, dairy, eggs (animal sources)
 - Tofu
 - LBV – these are missing at least one essential amino acid
 - Seeds, nuts, beans, pulses, cereals, Quorn (plant sources)

- **Function**
 - Growth
 - Repair
 - Maintenance

<table>
<thead>
<tr>
<th>Dietary Reference Values</th>
<th>1-3</th>
<th>4-6</th>
<th>7-10</th>
<th>11-14</th>
<th>15-18</th>
<th>19-50</th>
<th>50+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amount</td>
<td>15g</td>
<td>20g</td>
<td>28g</td>
<td>42g</td>
<td>55g</td>
<td>55g</td>
<td>53g</td>
</tr>
</tbody>
</table>

- **Complementary actions**
 - Combining 2 or more LBV proteins helps get a balance of essential amino acids. e.g. beans on toast.

Fats, oils and lipids:
Too much fat is bad for you, but so is not enough.

- **Saturated Fats**
 - (From Animal sources. They are also called unhealthy fats. They are generally solid at room temperature)
 - Sausages / Bacon / Lard / Dairy

- **Unsaturated Fats**
 - (These are healthier. They are often liquid at room temperature.)
 - Monounsaturated fats
 - olive oil / avocados
 - Polyunsaturated fats
 - sunflower oil / seeds

- **Omega-3**
 - These are Polyunsaturated and called “healthy” fats as your body needs them but can’t make them. They are good for your heart.
 - Oily fish / Nuts / Seeds

- **Function**
 - Energy
 - Warmth
 - Protection of organs
 - Source of fat soluble vitamins
 - Hormone production

Carbohydrates:
There are 2 kinds, simple or complex.

- **Simple**
 - These are sugars (monosaccharides, disaccharides)
 - Cakes, jam, soft drinks
 - **Unhealthy** fats. They are generally solid at room temperature
 - Sausages / Bacon / Lard / Dairy

- **Complex**
 - These are starches (polysaccharides)
 - Bread, potatoes

- **Function**
 - Quick burst of energy
 - Longer lasting energy

- **Dietary advice**
 - Reduce the amount of sugar that we eat, no more than 5% of our diet.
 - Complex Carbohydrates should make up half of the energy we eat.
 - Wholegrain cereals are a good source of fibre

<table>
<thead>
<tr>
<th>Dietary Reference Values</th>
<th>Too much</th>
<th>Not enough</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRI</td>
<td>Men</td>
<td>Women</td>
</tr>
<tr>
<td>Total fat</td>
<td>95g</td>
<td>70g</td>
</tr>
<tr>
<td>Sat fat</td>
<td>30g</td>
<td>20g</td>
</tr>
</tbody>
</table>

- **Not enough**
 - Can make blood sugar level drop
 - hunger, dizziness, Tiredness
 - Lack of energy
 - Our body will use protein for energy (leads to loss of muscle)
 - Excess protein can be converted to energy. If unused turns to fat.
 - Excess is turned into fat
 - Can make blood sugar level drop
 - Can cause obesity
 - Too much sugar leads to dental problems
 - Can lead to type 2 diabetes

- **Too much**
 - Obesity
 - Heart disease
 - Type 2 diabetes
 - Stroke
 - Cancer
 - Vitamin deficiency (fat soluble)
 - Unprotected organs
Vitamins
They all have different functions, but generally:
⚫ Help the body release energy
⚫ Prevent some diseases
⚫ Keep the body healthy
⚫ Repair cells

Micronutrients
Micronutrients are needed in small amounts to make the body function properly.

Fat soluble vitamins:
- vitamin A, and vitamin D
 - Don’t need to be eaten every day as the body can store them in the liver and fatty tissues.
 - Too many in our diet can cause us harm

Water soluble vitamins: B
- vitamins: vitamin C
 - Not stored in the body so need to be eaten
 - To maximise the intake and prevent loss, steam instead of boil the food, or use the water in gravy
 - Excess vitamins are eliminated in the urine

Minerals
Minerals help chemical reactions in our body.

<table>
<thead>
<tr>
<th>Source</th>
<th>Function</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calcium</td>
<td>Dairy, green leafy veg, bread</td>
<td>Strong bones</td>
</tr>
<tr>
<td>Iron</td>
<td>Meat, green leafy veg</td>
<td>Red blood cells</td>
</tr>
<tr>
<td>Potassium</td>
<td>Fruit and veg</td>
<td>Heart health</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Green leafy veg</td>
<td>Release energy and bone health</td>
</tr>
</tbody>
</table>

Trace Elements
Trace elements help chemical reactions in our body.

<table>
<thead>
<tr>
<th>Source</th>
<th>Function</th>
<th>Deficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluoride</td>
<td>Fish, toothpaste</td>
<td>Strengthens teeth</td>
</tr>
<tr>
<td>Iodine</td>
<td>Seafood and dairy</td>
<td>Hormone development</td>
</tr>
</tbody>
</table>

Fibre
Fibre is also known as “roughage” or “non-soluble polysaccharides (NSP)”.

<table>
<thead>
<tr>
<th>Insoluble fibre</th>
<th>Source</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wholegrain, whole wheat and wholemeal cereals</td>
<td>Lower cholesterol, helping reduce the risk of heart disease.</td>
<td></td>
</tr>
<tr>
<td>Helps to control the level of blood sugar by slowing down the release of food from the stomach (good for diabetics)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Soluble Fibre</th>
<th>Source</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peas, beans, lentils, apples and citrus fruit</td>
<td>Constipation, bowel cancer</td>
<td></td>
</tr>
</tbody>
</table>

Water
Keeps us hydrated.

Source
Drinks, fruit and vegetables, soup.

Function
- Normal physical and cognitive functions,
- Normal regulation of the body’s temperature.
- Gets rid of waste substances in the body.
- Even mild dehydration can lead to headaches, irritability and loss of concentration.
- Groups at risk include children, old people and active people.

Deficiency
- Constipation, bowel cancer

RDA
30g per day
We use the eatwell guide to get a balance of healthier and more sustainable food. It shows how much we should eat from each group.

1. **Base your meals on starchy food**
 Most of the food on your plate should consist of starchy foods.
 These supply important energy and give important minerals and dietary fibre.
 Whole grain and whole wheat versions are best.
 How?
 Have a side of starchy food like potato, rice, pasta or bread.

2. **Eat lots of fruit and veg**
 We should eat at least five a day.
 How?
 Choose from fresh, frozen, tinned, dried or juiced.
 Add vegetables to meals
 Add vegetables or fruit to cakes and desserts.

3. **Eat more fish**
 Fish is a good source of protein, contains vitamins, minerals and omega 3.
 How?
 Aim for at least two portions of fish a week.

4. **Eat less saturated fat and sugar**
 Too much fat is bad for you and causes dietary health problems (disease, obesity, stroke).
 How?
 • Cut visible fat from the meat
 • Choose lean cuts of meat
 • Offer low fat spreads

5. **Eat less salt**
 Eat no more than 5g a day.
 Too much salt causes high blood pressure, strokes and dehydration.
 It is highly addictive!
 How?
 • Cook dishes using fresh ingredients
 • Don’t add salt at the table
 • Don’t add salt to the cooking water

6. **Get active**
 If you eat more energy than your body needs, it is turned into fat.
 If you don’t eat enough energy your body cannot function properly.
 Being overweight can lead to heart disease, high blood pressure or diabetes.
 Being underweight also affects your health and leads to bulimia or anorexia.
 How?
 • Only eat as much food as you need
 • Exercise for 30 minutes a few times a week.

7. **Drink plenty of water**
 Our bodies are 2/3s water. It is vital to drink enough water to stay hydrated.
 Even mild dehydration can lead to headaches, irritability and loss of concentration.
 How?
 • Drink loads of water
 • Fruit, soup and other drinks also count.

8. **Eat breakfast**
 Breakfast is the most important meal of the day as it gives energy for the day.
 It should be made up of complex carbohydrates for a slow release of energy and stop us snacking.

We also follow the 8 government healthy eating guidelines:
Section 3: Diet and good health: Nutritional Needs

Life Stages

Toddlers
- Eatwell guide doesn’t apply
- High calcium
- Small meals
- Variety of different foods

Special Dietary Needs

Allergy: an adverse reaction by the body to certain substances

Intolerance: condition that makes people avoid certain food because of the effects on their body

Allergic reaction: the way someone responds to certain food.
- For example: a rash/swelling/anaphylactic shock

Type 2 Diabetes
- Starchy food/high in sugar

Low fat diet
- Foods naturally high in fat
- Foods cooked in a lot of fat

Low salt diet
- Processed food
- Smoked meat
- Chinese food with MSG

Nut allergy
- Avoid nuts, blended cooking oil, margarine with nut oils and often seeds

Lactose intolerance
- Avoid milk, cheese, yogurt, processed food

Gluten intolerance (coeliac)
- Avoid Wheat, wholemeal, bran, pasta, rye, beer.

Iron deficiency anaemia
- High iron food – red meat, dark green leafy vegetables

Calcium deficiency
- High calcium food – dairy
- High Vit. D food – tuna, salmon

Dental Caries
- Limit sugary food

Cardiovascular disease and obesity
- Correct portion size
- Reduce Saturated fats
- Fruit and veg to replace fatty food

Specific Lifestyle Choices

Religious/cultural

Muslims
- Do not eat pork
- Meat must be halal
- No alcohol or shellfish

Hindus
- Do not eat beef (a cow is considered sacred)
- Many are vegan, although some do eat meat

Jews
- No pork or shellfish
- No milk and meat together
- Meat must be kosher

Vegetarians - Ethical or moral choices
- Dishes with vegetables generally healthy
- Need protein from other sources
- Risk of iron, B1, B9 and B12 deficiency
- Protein from Quorn/tofu

Physical Activity

People may have high energy needs if they are physically active, such as sports people or people who are on their feet a lot.
What are bacteria?
A microorganism that multiply in certain conditions.

Where can bacteria be found?
Everywhere!

Are all bacteria bad?
No—some are good and essential for normal bodily function.

How can you reduce the risk of bacteria?
➢ Storing food separately
➢ Storing and cooking foods at the correct temperatures

Can we kill bacteria by putting them in the fridge?
No—but keeping food chilled at the correct temperatures will slow bacterial growth.

Storing Food
Temperature is really important to keep food safe. The following temperatures should be used:

<table>
<thead>
<tr>
<th>Refrigeration</th>
<th>°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freezing</td>
<td>-18</td>
</tr>
<tr>
<td>Cooking</td>
<td>72</td>
</tr>
</tbody>
</table>

Danger Zone
The temperature range where bacteria is most likely to reproduce: 8°C-63°C.

The 4 C’s
Cleaning - wash your hands properly
Cooking - make sure you cook food properly or you could make someone very ill
Chilling - keep it chilly silly
Cross contamination - keep raw meat and cooked food apart

What do bacteria need to multiply?

- Water: bacteria need moisture to grow
- Food: provides the energy for bacteria to grow, multiply, and produce toxins
- Time: if food is exposed to these things for a long time they will quickly multiply

What is cross contamination?
Cross contamination is spreading bacteria from one place to another.

What are the four C’s to help prevent spreading bacteria?
Clean
Cook
Chilling
Cross contamination

Why do we use different coloured chopping boards when preparing food?
To prevent the spreading of bacteria (to avoid cross contamination).
Sources of contamination:

<table>
<thead>
<tr>
<th>Name</th>
<th>Natural contamination</th>
<th>Additional contamination</th>
<th>Prevention</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Food poisoning</td>
<td></td>
<td>Bacteria from another source</td>
<td>Store food properly</td>
</tr>
<tr>
<td>Chemical</td>
<td></td>
<td>From cleaning chemicals,</td>
<td>Store your cleaning chemicals away from food</td>
</tr>
<tr>
<td>Physical</td>
<td>Bones</td>
<td></td>
<td>Tie your hair up</td>
</tr>
</tbody>
</table>

Methods of cooking food

<table>
<thead>
<tr>
<th>Method</th>
<th>How</th>
<th>Example</th>
<th>Advantage</th>
<th>Disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moist heat method</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boiling</td>
<td>Starchy food boiled vigorously</td>
<td>Potatoes</td>
<td>Healthy (no extra fat)</td>
<td>Water soluble vitamins lost</td>
</tr>
<tr>
<td>Poaching</td>
<td>Food gently cooked in a small amount of liquid</td>
<td>Meat, fish or eggs</td>
<td>Healthy (no extra fat)</td>
<td>Water soluble vitamins lost</td>
</tr>
<tr>
<td>Steaming</td>
<td>Food cooked in the steam of boiling water</td>
<td>Vegetables, fish</td>
<td>Healthy (no extra fat)</td>
<td>Takes a long time</td>
</tr>
</tbody>
</table>

Dry Heat Method				
Baking	Dry, hot air of oven	Cakes, bread	Good colour and texture, Many products cooked at once	Specific times and temperatures needed
Roasting	Dry, hot air of oven. Food is basted to stop it drying out	Joints of meat, vegetables	Flavour and texture, multiple products at the same time	Takes a long time, food can dry out
Grilling	Small pieces of food cooked by radiant heat	Sausages, bacon	Healthy (fat drips out of meat)	Needs supervision, easy to under/overcook

Frying Method				
Shallow frying	Small items cooked with a little fat	Chicken, vegetables, sausages	Quick method, minimal fat added	Not very healthy, needs constant supervision
Deep Frying	Food submerged in hot oil	Chips, chicken, fish	Golden colour and crunchy texture	Very unhealthy Needs supervision dangerous
Stir frying	Food kept moving in small amount of oil	Thin strips of meat, vegetables	Quick, limited vitamin loss	Lots of prep needed, constant supervision

Signs of Spoilage

- **Discolouration** - Change in colour
- **Change in texture** - Slimy, wrinkly, lumpy, hard
- **Visible mould**
- **Smell** - Sour, bitter or sharp
- **Change in flavour** - Sour, rancid, acidic

Positive use of Microorganisms:

1. Mould is added to blue cheese
2. Yeast is used to make bread
3. Bacteria is used to make yoghurt

Food Preservation:

Food need to be preserved in a way that reduces the bacterial growth, moulds or spoilage.

- Controlling temperature
- Removing moisture/air
- Changing pH
- High cooking temperature

Why Bother?

Prevents food poisoning
Reduces food waste
Saves money
Helps planet

Methods of Preservation:

1. Freezing: Freeze foods to slow growth/make organisms dormant. e.g. meat
2. Chilling: Keeping food in the fridge or a chiller cabinet slows down growth of microorganisms. e.g. meat
3. Jam Making provides a sugary medium which inhibits growth of bacteria and mould e.g. strawberries
4. Pickling: alters the pH levels inhibiting growth of bacteria and moulds e.g. strawberries
5. Salting: the salt draws moisture from the food which therefore prevents/inhibits growth of bacteria and moulds e.g. onions
6. Canning: food contents are processed and sealed in an airtight container. e.g. fruit
Why food is cooked:

1. To make it safe to eat
2. To improve the shelf life
3. To develop flavour
4. To improve texture
5. To give variety

Methods of heat transfer

- **Convection** - when the environment (air, water or oil) is heated up.
 - e.g. - baking a cake
 - boiling an egg
- **Conduction** - when heat is transferred directly.
 - e.g. - frying an egg
- **Radiation** - when heat radiates
 - e.g. - toast

What happens when food is cooked:

<table>
<thead>
<tr>
<th>Changes to:</th>
<th>Taste</th>
<th>Colour</th>
<th>Texture</th>
<th>Smell</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>denaturation:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the process of altering a protein's molecular characteristics or properties</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates: Gelatinization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The process of turning a liquid into a solid</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates: Caramelisation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sugars change colour and flavour when heated</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Onions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbohydrates: Dextrinization</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the browning that happens when starches are cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Toast</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fats: Plasticity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>the ability of fat to hold its shape</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Example:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water: Evaporation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>when water is heated it turns into a gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Effect of pH, Oxygen and Enzymes of Food:

Effect of pH

- Acid denatures protein, and preserves food
 - Causes milk to coagulate and split
 - Vinegar can preserve or pickle
 - Denature proteins in marinade to make them more tender
- Alkali
 - Bicarbonate of soda acts as a raising agent by reacting with acids to produce gas

The effect of oxygen

- Fruit and vegetables
 - Go brown when peeled or sliced.
 - This is known as enzymic browning.
 - To slow it down, put them in water (this stops the oxygen getting to it)
- Meat, poultry and fish
 - Makes the blood in meat go brown. It is still safe to eat.
- Fats and oils
 - Gradually makes them go rancid

Enzymes:

- (Biological catalysts that speed up biochemical reactions.)
 - Digestive enzymes break food down in your digestive system.
 - Enzymes cause food to ripen
 - Enzymes to break down connective tissues and develop flavour in meat
Food Waste

What is food waste?
Food waste is food that is discarded, lost or uneaten.

What is the difference between best before, use by and sell by date?

➢ Best Before date: It means the product will taste best up until that date. It is still edible and okay to eat a little past the listed date, though you may notice a slight change in texture, flavour, or colour.

➢ Use by date: The date that food should be used by. After this it may be unsafe.

➢ Sell by date: a date marked on a perishable product indicating the recommended time by which it should be sold.

To generate electricity, power stations need to burn fossil fuels. This causes gases such as carbon dioxide to be released into the atmosphere.

Tips for reducing food waste

1. Reduce
2. Reuse
3. Redistribute/recycle
4. First in first out (FIFO)
5. Store food correctly – use your freezer
6. Don’t cook too much
7. Know the difference between best before and use by dates
Section 5: Where Food Comes From

Food Processing

Primary Processing

Primary processing is the turning raw food materials to foods that can be eaten or to ingredients that are used to make food products.

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Washing</td>
<td>Pasteurising Milk</td>
</tr>
<tr>
<td>Milling</td>
<td>Preparing Vegetables</td>
</tr>
<tr>
<td>Trimming</td>
<td>Milling Flour</td>
</tr>
<tr>
<td>Squeezing</td>
<td>Cutting Chicken</td>
</tr>
<tr>
<td>Peeling</td>
<td>Cutting Steaks</td>
</tr>
<tr>
<td>Butchery</td>
<td>Removing husk from Rice</td>
</tr>
<tr>
<td>Shelling and chopping</td>
<td></td>
</tr>
</tbody>
</table>

Secondary Processing

When you turn primary processed food into food products.

<table>
<thead>
<tr>
<th>Techniques</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>Using flour to make bread</td>
</tr>
<tr>
<td>Heating</td>
<td>Using milk to make butter or cheese</td>
</tr>
<tr>
<td>Cooling</td>
<td>Making meat and fish products</td>
</tr>
<tr>
<td>Drying</td>
<td>Making complete ready to eat meals.</td>
</tr>
<tr>
<td>Fortifying</td>
<td>Fortifying flour</td>
</tr>
<tr>
<td></td>
<td>Using flour to make biscuits</td>
</tr>
</tbody>
</table>

Why Process Food?

- Makes it last longer
- Makes it look nicer
- Makes it easier to digest
- More convenient

Food Additives

Food additives are added to products for a specific function (to do a job)

Examples of these jobs are adding colour, flavour or texture, and preserving food.

Preservatives
- Prevent spoilage
- e.g. Nitrite (E249) to preserve ham

Additives

- They may be:
 - Natural - found naturally,
 - Synthetic - manmade copies of natural substances
 - Artificial - produced

Colours
- Restore or add colour to food
 - e.g. Beetroot red (E162)

Flavour enhancers
- Bring out flavor in processed food
 - e.g. MSG (E162)

Antioxidants
- Prevent rancidity and oxidation
 - e.g. Ascorbic acid (E300)

Stabiliser
- Prevents ingredients separating

Sweeteners
- e.g. sorbitol or aspartame

Emulsifier
- Mix ingredients together
 - e.g. lecithin

Advantages

- Nutrients can be added in secondary processing
- Makes it safer
- Makes it easier to use
- Makes it easier to market or brand

Disadvantages

- Nutrients are lost in primary processing
- Food additives can be dangerous
 - Can be high in fat, salt and sugar

Food is produced in a factory in a clean environment, which means that it's safe to eat.
Reducing waste

- Compost vegetable peelings
- Look for products in little or no packaging
- Bulk buying is cheaper & uses less packaging.
- Reuse containers for storing goods
- Use bio-degradable products that are less harmful to the environment
- Recycle all plastic, glass, paper, tin and card

Sustainability of food

- Food production is one of the greatest causes of environmental damage
- We need to produce more food with less environmental impact
 - Meat production increases air and water pollution
 - Crops used for animal feed reduces bio-diversity
 - Crop production uses lots of pesticides which harm insects
 - Deforestation for crop growth damages the environment
- Challenges include
 - Increased demand,
 - Stability in supplies,
 - Use of antibiotics in meat farming

Solutions include

- Buying organic food
- Buying local food
- Eating less meat
- Growing your own
- Buying sustainable fish (MSC)
- Buying Fairtrade products

Food security

- Having enough food
- Having the resources to get food
- Knowing how to use food for a healthy diet
- Having enough water and sanitation

Causes

- Poverty
- Trade
- Conflict
- Disasters
- Population
- Health

Food Labelling - what you must show

<table>
<thead>
<tr>
<th>On the front of the product:</th>
<th>Anywhere else (side/back or front)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The name of the food</td>
<td>A list of ingredients</td>
</tr>
<tr>
<td>A ‘best before’ or ‘use by’ date</td>
<td>The name and address of the manufacturer</td>
</tr>
<tr>
<td>Any necessary warnings</td>
<td>The batch number</td>
</tr>
<tr>
<td>Quantity information</td>
<td>Any special storage conditions</td>
</tr>
<tr>
<td></td>
<td>Instructions for use or cooking,</td>
</tr>
<tr>
<td></td>
<td>Barcode</td>
</tr>
<tr>
<td></td>
<td>Place of origin</td>
</tr>
</tbody>
</table>
Types of Packaging

<table>
<thead>
<tr>
<th>Example</th>
<th>Use</th>
<th>Reasons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardboard boxes</td>
<td>Pizzas</td>
<td>Easy to print</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Soak up grease</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Protect pizza when carrying</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keep pizza hot</td>
</tr>
<tr>
<td>Polystyrene boxes</td>
<td>Burgers, fish and chips</td>
<td>Strong</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light to carry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not react with food</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keep food warm (insulator)</td>
</tr>
<tr>
<td>Clear plastic boxes</td>
<td>Sandwiches</td>
<td>Easy to print</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Light to carry</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Keep fresh</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hygienic</td>
</tr>
<tr>
<td>Foil trays with cardboard lids</td>
<td>Indian/Chinese TA</td>
<td>Keep hot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Easy to write on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Stack easily lightweight</td>
</tr>
<tr>
<td>Plastic containers with lids</td>
<td>Indian/Chinese TA</td>
<td>Keep hot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Seals mean no leaks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reuse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Do not react with food</td>
</tr>
</tbody>
</table>

Why Package Food?

- To protect the contents
- To hold the contents
- To keep food fresh
- To reduce food waste
- To make food easier to handle, transport and serve
- To improve hygiene
- To make it look more attractive
- To give information on contents, storage and use

Sustainable Packaging Should

- Be sourced manufactured, transported and recycled using renewable energy.
- Be low toxic in its manufacture, use and disposal.
- Be designed to optimise materials & energy.
- Be able to meet market criteria for performance and cost.
- Be beneficial, safe and healthy for throughout its lifecycle.
- Use local materials and resources where possible.

Packaging

<table>
<thead>
<tr>
<th></th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper and Card</td>
<td>Easily printed, can be recycled</td>
<td>Crushes easily, weak when wet, recycled paper and card cannot be used</td>
</tr>
<tr>
<td>Glass</td>
<td>Easily printed, can be recycled</td>
<td>Brittle (breaks easily), expensive</td>
</tr>
<tr>
<td>MAP (Modified Atmosphere</td>
<td>Gives food a stronger atmosphere (fresh meat, fresh fish and salads)</td>
<td>Once opened food deteriorates quickly</td>
</tr>
<tr>
<td>Packaging)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal</td>
<td>Recyclable, easily printed</td>
<td>Strong, rigid, must be coated or it will react with food, cannot be used</td>
</tr>
<tr>
<td>Plastic or Polystyrene</td>
<td>Strong, flexible</td>
<td>Litter, limited resource, can be hard to recycle chemicals</td>
</tr>
</tbody>
</table>

Reducing Food Packaging Waste

- **Reduce**
 - Avoid packaged products
 - Take reusable bags with you when shopping
- **Reuse**
 - Buy refill packs
 - Glass milk bottles are returnable
 - Use jars or tubs for storage at home
- **Recycle**
 - Paper, card, metal and some plastics
 - Collected by the council, or you could take them to a recycling bank

Takeaway Packaging

- Properties of Packaging:
 - Strong
 - Keeps food hot
 - Portion control
 - Hygienic
 - Light weight
 - Will not leak
 - Does not react with food
 - Can be written on
 - Provides protection
 - Environmentally friendly
 - Keeps food fresh

Section 5: Where Food Comes From - Packaging
You need to be able to use sensory descriptors to correctly describe the sensory qualities (how food looks, tastes, feels and smells) for a range of foods and combinations.

Sensory Testing
Humans taste with their tongue and nose. Tongues have thousands of taste buds that detect 5 things
- Salt
- Sweet
- Sour
- Bitter
- Umami (savoury)

We use our taste buds together with olfactory receptors in the nose (which detect smells) to identify the flavour of foods.

People use a combination of these senses to decide whether food is appetising.

Sight
- Food must look appealing; colourful, fresh, attractively presented.

Smell
- Smell helps us to taste food. How it is cooked and flavoured will affect the aroma that it gives off.

Taste
- Must be enjoyable. Cooking method, freshness of ingredients, herbs and seasoning all affect overall taste

Touch
- Texture can make a big difference. Crunchy not soggy veg, firm not soggy pasta, crunchy not soft biscuits.

Sensory Testing needs to be fair and unbiased. Your test should allow you to find out other people’s opinions of your food so you can improve it.

1. Use enough tasters to gather a range of opinions
2. Consider a blind test - where tasters are not told what they are testing
3. Allow tasters to work alone if they are not influenced by others
4. Give tasters clear instructions of what you want them to do
5. Only use small samples to avoid filling up your tasters!
6. Allow tasters to drink water in between each sample to wash away previous tastes
7. Tests should be carried out in clean, hygienic and quiet locations

Results can then be analysed to allow you to improve your product.

<table>
<thead>
<tr>
<th>Ranking Test</th>
<th>Profiling Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foods are tasted and put in order from lowest to highest for a particular characteristic or quality e.g. sweetness. The scores are totaled at the end.</td>
<td>Tasters rate certain characteristics of food and the average rating of each is worked out to create a profile of the food. This can be displayed visually on a star diagram. Star diagrams can be overlapped to compare two different foods.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Paired Preference Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two slightly different food products e.g. biscuits (one made with margarine and the other with butter) are tasted and the taster chooses their favourite.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Triangle Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>This is a type of discrimination test. Three foods are tested where two are the same and one has a tweaked recipe. The taster has to identify which product differs from the others.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hedonic Rating Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>People rate a variety of foods using a scale e.g. 1-5, hate/love, or smiley face and sad face..</td>
</tr>
</tbody>
</table>
Factors affecting food choice

- Physical Activity Level (PAL)
- Healthy eating
- Cost of food
- Income
- Culinary Skills
- Lifestyle
- Seasonality
- Availability
- Special Occasions
- Enjoyment
- Allergies
- Intolerances
- Animal welfare
- Working conditions (fair trade)
- Environmental impact
- Eating naturally

Different Religions Have Different Views on Food

Hinduism
Many Hindus are vegetarian. Some vegetables are avoided as they are seen as harmful, including garlic, onions and mushrooms. Some Hindus do eat meat but it must be slaughtered using a quick painless method called Jhatka. Cows are considered sacred and cannot be eaten.

Islam
Meat eaten by Islams must be halal - the animal is slaughtered in a specific way whilst being blessed. Muslims cannot eat pork or product made from pigs such as gelatine. They cannot drink alcohol. During Ramadan muslims fast between sunrise and sunset.

Christianity
No strict dietary rules
During lent some christians give up certain foods or drinks
Specific food traditionally eaten during celebrations. Hot cross buns on good friday, pancakes for shrove tuesday.

Sikhism
Baptised Sikhs are prohibited from eating ritually slaughtered meat (koshert and halal), may are vegetarian. Sikhism teaches against overindulging and only to eat what is needed.

Buddhism
Buddists believe all living things are sacred and most are vegetarian or vegan. Most do not drink alcohol. Some chose to fast from noon until the following sunrise.

Judaism
Follow Jewish dietary laws (kashrut). Food must be kosher - fir for consumption. Kosher animals have split hooves and chew the cud - cows and deer. Can eat fish with fins and scales but no shellfish. Slaughter of animals must be quick and painless. Cannot eat pig, rabbit, hare, camel and many other animals. Dairy and meat products cannot be cooked or mixed together.

Rastafarianism
Eaten pork is forbidden. Many eat a clean and natural diet called I-tal, mainly made up of vegetables. The can eat fish under 30cm. Many do not drink alcohol. They drink things made from naturally grown produce such as herbal tea or fruit juice.
Food labels help people to make informed choices about what they eat. The information is controlled by different regulations.

Compulsory Information

Food Labelling Regulations

- Food Information for Consumer (FIC) updated in 2014 must be followed by all European Union countries (EU)
- From 2016 it was compulsory for nutritional information to be included on the label
- The food standards agency (FSA) is responsible in the UK for ensuring manufacturers follow the regulations
- In the UK mood labels must not mislead, be easy to read and all allergies must be emphasised.

Compulsory Information

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Per 100g</th>
<th>Per 50g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy (kJ)</td>
<td>1651</td>
<td>846</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>Glycaemic Carbohydrates (g)</td>
<td>7.5</td>
<td>3.75</td>
</tr>
<tr>
<td>of which total sugars* (g)</td>
<td>6.8</td>
<td>3.4</td>
</tr>
<tr>
<td>of which Polyols (g)</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>of which Starch (g)</td>
<td>1.1</td>
<td>0.55</td>
</tr>
<tr>
<td>Total Fat (g)</td>
<td>10.5</td>
<td>5.25</td>
</tr>
<tr>
<td>of which saturated fat (g)</td>
<td>1.15</td>
<td>0.575</td>
</tr>
<tr>
<td>of which trans fat (g)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>of which monounsaturated fat (g)</td>
<td>4.4</td>
<td>2.2</td>
</tr>
<tr>
<td>of which polyunsaturated fat (g)</td>
<td>0.7</td>
<td>0.35</td>
</tr>
<tr>
<td>Cholesterol (mg)</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Dietary Fibre (g)</td>
<td>9</td>
<td>4.5</td>
</tr>
<tr>
<td>Total Sodium (mg)</td>
<td>66</td>
<td>33</td>
</tr>
</tbody>
</table>

*AOAC 991.43 | *Sugar from Cow’s Milk (Lactose)

Energy is given in kilojoules, and the rest in grams

Any pre packaged food labels MUST have this highlighted information on.

- Manufacturers will often add information or claims about their products to make them more attractive to the consumer
- **Traffic light labelling** allows people to see how healthy the product is at a glance. These are useful but not required by law.

Non - Compulsory Information

- Products can state whether they are suitable for certain groups, such as religious groups or dietary choice e.g. vegan
- Country of origin
- Serving suggestions.

Any genetically modified ingredient need to also be shown.
Companies use marketing tools to try to get you to buy there food and drinks.

Special offers
Very common in supermarkets and wherever food is sold.

Designed to convince you to buy the food - perhaps even more than you actually need

Loyalty card schemes - where you collect points for your shopping - record your food choices then they can send you matching offers.

Point of sale marketing - placing products near the till to tempt you as you queue to pay.

Celebrity Brand Endorsements
Some companies are endorsed by celebrity chefs to boost sales, the chefs name can be used to convince you that it's a high quality product.

Celebrities from TV or films may also be used on advertising, their association again suggests a high quality product.

Food companies may sponsor sports teams or individuals e.g. Lucozade has had links with many sport stars past and present. They may pay to have their product name displayed at sporting events too so it is seen by a wide audience.

Health Claims
Manufacturers may promote particular health benefits. Such claims make the product look healthy and may boost sales.

They may launch a low sugar or low fat version of a product e.g. Coke Zero.

Gluten or lactose free products target individuals with a specific dietary need or choice.

Promotion of Ethical Values
Fair Trade products may cost more to produce but they can charge more and the product may appeal to a wider audience.

Organic food again can be sold at a higher price and can target a specific audience.

Packaging may be environmentally friendly - it may be biodegradable or recyclable.

Some products may be labelled as natural or fresh even if they contain artificial chemicals,
You need to be able to use sensory descriptors to correctly describe the sensory qualities (how food looks, tastes, feels and smells) for a range of foods and combinations.

Knife Skills
- Meat, fish and alternatives
 - fillet a chicken breast, portion a chicken
 - remove fat and rind,
 - fillet fish,
 - slice raw and cooked meat and fish or alternatives (such as tofu and halloumi) evenly and accurately

Prepare fruits and Vegetables
- fruits and vegetables
 - bridge hold,
 - claw grip,
 - peel,
 - slice,
 - dice
 - cut into even size pieces (i.e. batons, julienne)

- mash, shred, scissor snip, scoop, crush, grate, peel,
- segment, de-skin, de-seed,
- blanch, shape, pipe, blend,
- juice and prepare garnishes
- demonstrate the technical skills of controlling enzymic browning and spoilage and preventing food poisoning (wash and dry where appropriate)

Prepare combine and shape
- Roll, wrap,
- skewer, mix,
- coat,
- layer meat, fish and alternatives, shape and bind wet mixtures (such as falafels, fish cakes or meatballs)
- demonstrate the technical skill of preventing cross contamination and handle high risk foods correctly

Tenderise and Marinate
- Demonstrates how acids denature protein and marinades add flavour and moisture when preparing vegetables, meat, fish, and alternatives

Select and adjust a cooking Process
- Select and adjust the cooking process and length of time to suit the ingredient, for example to match the cut of meat, fish and alternatives
You need to be able to use sensory descriptors to correctly describe the sensory qualities (how food looks, tastes, feels and smells) for a range of foods and combinations.

Making Sauces
- Make a blended white sauce (starch gelatinisation) a roux and all in one blended sauce, infused sauce, veloute, bechamel, to demonstrate understanding of how liquid/starch ratios affect the viscosity and how conduction and convection work to cook the sauce and the need for agitation
- Make a reduction sauce such as pasta sauce, curry sauce, gravy, meat sauce (including meat alternatives such as myco-protein and textured vegetable protein) to demonstrate how evaporation concentrates flavour and changes the viscosity of the sauce
- Make an emulsion sauce such as a salad dressing, mayonnaise, hollandaise to demonstrate the technical skill of how to make a stabilised emulsion

Water based methods using the hob
- Demonstrate the following techniques:
 - steaming
 - boiling and simmering
 - blanching
 - poaching

Dry heat and fat based methods using the hob
- Demonstrate the following techniques:
 - dry frying
 - pan (shallow frying)
 - stir frying

Weigh and Measure
- Demonstrate accurate measurement of liquids and solids

Preparation of ingredients and equipment
- Demonstrate the following techniques:
 - grease/oil, line, flour, evenly and with attention to finished product
You need to be able to use sensory descriptors to correctly describe the sensory qualities (how food looks, tastes, feels and smells) for a range of foods and combinations.

Using Raising agents

Demonstrate the following techniques:
- Use egg (Colloid foam) as a raising agent—create gas in air foam—whisking egg whites, whisked sponge
- Use Chemical Agents—self-rasing flour, baking powder, bicarbonate of soda
- Use Steam in a mixture (Choux Pastry, Batter)

Set a mixture - removal of heat (gelation)

Demonstrate the following techniques:
- use starch to set a mixture on chilling for layered desserts such as custard or cheesecake

Set a mixture - heating (coagulation)

Demonstrate the following techniques:
- use protein to set a mixture on heating such as denatured protein in eggs for quiche, choux pastry

Using the oven

Demonstrate the following techniques:
- baking
- roasting
- casseroles and/or tagines
- braising

Use of Equipment

Demonstrate the following techniques:
- use a blender, food processor, mixer, and microwave

Using the grill

Be able to demonstrate the following techniques with a range of foods, such as vegetables, meat, fish or alternatives such as halloumi, seeds and nuts:
- char
- grill or toast
You need to be able to use sensory descriptors to correctly describe the sensory qualities (how food looks, tastes, feels and smells) for a range of foods and combinations.

Shaping and finishing dough

Demonstrate the following techniques:
- roll out pastry, use a pasta machine, line a flan ring, create layers (palmiers), proving/resting
- glazing and finishing such as pipe choux pastry, bread
- rolls, pasta, flat breads, pinwheels, pizza, calzone

Test for Readiness

Demonstrate the following techniques:
- use a temperature probe, knife/skewer, finger or ‘poke’ test, ‘bite’, visual colour check or sound to establish whether an ingredient or recipe is ready

Judge and manipulate sensory Properties

Demonstrate the following techniques:
- how to taste and season during the cooking process
- Change the taste and aroma through the use of infusions, herbs and spices, paste, jus, reduction
- how to change texture and flavour, use browning
- (dextrinisation) and glazing, add crust, crisp and crumbs
- presentation and food styling – use garnishes and decorative techniques to improve the aesthetic qualities,
- demonstrate portioning and presenting